

ADVANCED SUBSIDIARY GCE MATHEMATICS

4721/01

Core Mathematics 1

WEDNESDAY 9 JANUARY 2008

Afternoon

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

WARNING

You are not allowed to use a calculator in this paper.

This document consists of 4 printed pages.

© OCR 2008 [Y/102/2693]

OCR is an exempt Charity

[Turn over

1 Express $\frac{4}{3-\sqrt{7}}$ in the form $a+b\sqrt{7}$, where a and b are integers. [3]

- 2 (i) Write down the equation of the circle with centre (0, 0) and radius 7. [1]
 - (ii) A circle with centre (3, 5) has equation $x^2 + y^2 6x 10y 30 = 0$. Find the radius of the circle.
- Given that $3x^2 + bx + 10 = a(x+3)^2 + c$ for all values of x, find the values of the constants a, b and c.
- 4 Solve the equations

(i)
$$10^p = 0.1$$
, [1]

(ii)
$$(25k^2)^{\frac{1}{2}} = 15$$
, [3]

(iii)
$$t^{-\frac{1}{3}} = \frac{1}{2}$$
. [2]

- 5 (i) Sketch the curve $y = x^3 + 2$. [2]
 - (ii) Sketch the curve $y = 2\sqrt{x}$. [2]
 - (iii) Describe a transformation that transforms the curve $y = 2\sqrt{x}$ to the curve $y = 3\sqrt{x}$. [3]
- 6 (i) Solve the equation $x^2 + 8x + 10 = 0$, giving your answers in simplified surd form. [3]
 - (ii) Sketch the curve $y = x^2 + 8x + 10$, giving the coordinates of the point where the curve crosses the y-axis. [3]
 - (iii) Solve the inequality $x^2 + 8x + 10 \ge 0$. [2]
- 7 (i) Find the gradient of the line *l* which has equation x + 2y = 4. [1]
 - (ii) Find the equation of the line parallel to l which passes through the point (6, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers. [3]
 - (iii) Solve the simultaneous equations

$$y = x^2 + x + 1$$
 and $x + 2y = 4$. [4]

- 8 (i) Find the coordinates of the stationary points on the curve $y = x^3 + x^2 x + 3$. [6]
 - (ii) Determine whether each stationary point is a maximum point or a minimum point. [3]
 - (iii) For what values of x does $x^3 + x^2 x + 3$ decrease as x increases? [2]

© OCR 2008 4721/01 Jan08

9 The points A and B have coordinates (-5, -2) and (3, 1) respectively.

- (i) Find the equation of the line AB, giving your answer in the form ax + by + c = 0. [3]
- (ii) Find the coordinates of the mid-point of AB. [2]

The point C has coordinates (-3, 4).

- (iii) Calculate the length of AC, giving your answer in simplified surd form. [3]
- (iv) Determine whether the line AC is perpendicular to the line BC, showing all your working. [4]
- 10 Given that $f(x) = 8x^3 + \frac{1}{x^3}$,
 - (i) find f''(x), [5]
 - (ii) solve the equation f(x) = -9. [5]

© OCR 2008 4721/01 Jan08

4721 Core Mathematics 1

1	$\frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}$	M1		Multiply top and bottom by conjugate
	$= \frac{12 + 4\sqrt{7}}{9 - 7}$	В1		9 ± 7 soi in denominator
	$=6+2\sqrt{7}$	A1	3 3	$6+2\sqrt{7}$
2(i)	$x^2 + y^2 = 49$	В1	1	$x^2 + y^2 = 49$
(ii)	$x^{2} + y^{2} - 6x - 10y - 30 = 0$ $(x - 3)^{2} - 9 + (y - 5)^{2} - 25 - 30 = 0$ $(x - 3)^{2} + (y - 5)^{2} = 64$	M1		3 ² 5 ² 30 with consistent signs soi
	$r^2 = 64$ $r = 8$	A1	2 3	8 cao
3	$a(x+3)^{2} + c = 3x^{2} + bx + 10$ $3(x^{2} + 6x + 9) + c = 3x^{2} + bx + 10$ $3x^{2} + 18x + 27 + c = 3x^{2} + bx + 10$ $c = -17$			$a = 3 \text{ soi}$ $b = 18 \text{ soi}$ $c = 10 - 9a \text{ or } c = 10 - \frac{b^2}{12}$ $c = -17$
4(i)	p = -1	B1	1	p = -1
(ii)	$\sqrt{25k^2} = 15 25k^2 = 225$	M1		Attempt to square 15 or attempt to square root $25k^2$
	$k^2 = 9$ $k = \pm 3$	A1 A1	3	k = 3 $k = -3$
(iii)	$\sqrt[3]{t} = 2$ $t = 8$	M1 A1	2 6	$\frac{1}{\frac{1}{t^3}} = \frac{1}{2} \text{ or } t^{\frac{1}{3}} = 2 \text{ soi}$ $t = 8$

		1	
5(i)	ر لا	B1	+ve cubic
	× ×	B1 2	+ve or -ve cubic with point of inflection at (0, 2) and no max/min points
(ii)	^y	B1	curve with correct curvature in +ve quadrant only
	×	B1 2	completely correct curve
(iii)	Stretch	B1	stretch
	scale factor 1.5 parallel to y-axis	B1 B1 3	factor 1.5 parallel to y-axis or in y-direction
6(i)	EITHER) / (I	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	Correct method to solve quadratic
	$x = \frac{-8 \pm \sqrt{64 - 40}}{2}$		
		A1	$x = \frac{-8 \pm \sqrt{24}}{2}$
	$x = \frac{-8 \pm \sqrt{24}}{2}$		2
	$x = \frac{-8 \pm 2\sqrt{6}}{2}$ $x = -4 \pm \sqrt{6}$		
	$x = -4 \pm \sqrt{6}$	A1 3	$x = -4 \pm \sqrt{6}$
	OR $(n+4)^2 = 16+10=0$		
	$(x+4)^2 - 16 + 10 = 0$ $(x+4)^2 = 6$		
	$x + 4 = \pm \sqrt{6}$ M1 A1		
	$x = \pm \sqrt{6} - 4 $ A1		
(ii)	\ 7	B1	+ve parabola
	10	B1	parabola cutting y-axis at (0, 10) where (0, 10) is not min/max point
		B1 3	parabola with 2 negative roots
		M1	$x \le \text{lower root} x \ge \text{higher root} (\text{allow} <,>)$
(iii)	$x \le -\sqrt{6} - 4, x \ge \sqrt{6} - 4$	A1 ft 2	Fully correct answer, ft from roots found in (i)
		8	

7(i)	Gradient = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$
(ii)	$y - 5 = -\frac{1}{2}(x - 6)$	M1 B1 ft	Equation of straight line through (6, 5) with any non-zero numerical gradient
	2y - 10 = -x + 6	BIII	Uses gradient found in (i) in their equation of line
	x + 2y - 16 = 0	A1 3	Correct answer in correct form (integer coefficients)
(iii)	EITHER $\frac{4-x}{2} = x^2 + x + 1$	*M1	Substitute to find an equation in x (or y)
	$4 - x = 2x^2 + 2x + 2$		
	$2x^2 + 3x - 2 = 0$		
	(2x-1)(x+2) = 0	DM1	Correct method to solve quadratic
	$x = \frac{1}{2}, x = -2$	A1	$x = \frac{1}{2}, x = -2$
	$y = \frac{7}{4}, y = 3$	A1 4	$y = \frac{7}{4}, y = 3$
	·		SR one correct (x,y) pair www B1
	OR		
	$y = (4-2y)^2 + (4-2y) + 1$ * N	1	
	$y = 16 - 16y + 4y^2 + 4 - 2y + 1$		
	$0 = 21 - 19y + 4y^2$		
	0 = (4y - 7)(y - 3) DM	[]	
	$y = \frac{7}{4}, y = 3 $ A1		
	$x = \frac{1}{2}, x = -2$ A1		

8(i)	$\frac{dy}{dx} = 3x^2 + 2x - 1$ At stationary points, $3x^2 + 2x - 1 = 0$ $(3x - 1)(x + 1) = 0$ $x = \frac{1}{3}, x = -1$ $y = \frac{76}{27}, y = 4$		Attempt to differentiate (at least one correct term) 3 correct terms Use of $\frac{dy}{dx} = 0$ Correct method to solve 3 term quadratic $x = \frac{1}{3}, x = -1$ $y = \frac{76}{27}, 4$
(ii)	$y - \frac{d^2y}{27}, y - 4$ $\frac{d^2y}{dx^2} = 6x + 2$ $x = \frac{1}{3}, \frac{d^2y}{dx^2} > 0$	M1 6	SR one correct (x,y) pair www B1 Looks at sign of $\frac{d^2y}{dx^2}$ for at least one of their x -values or other correct method $x = \frac{1}{3}$, minimum point CWO
(iii)	$x = -1, \frac{d^2 y}{dx^2} < 0$ $-1 < x < \frac{1}{3}$	A1 3 M1 A1 2	$x = -1$, maximum point CWO Any inequality (or inequalities) involving both their x values from part (i) Correct inequality (allow $<$ or \le)

9(i)	Gradient of AB = $\frac{-2-1}{-5-3}$	B1
	3	

$$\frac{3}{8}$$
 oe

$$y-1=\frac{3}{8}(x-3)$$

M1Equation of line through either A or B, any nonzero numerical gradient

$$8y - 8 = 3x - 9$$

A1 3 Correct equation in correct form

$$8y - 8 = 3x - 9$$
$$3x - 8y - 1 = 0$$

Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

(ii)
$$\left(\frac{-5+3}{2}, \frac{-2+1}{2}\right) = (-1, -\frac{1}{2})$$

A1 2
$$\left| (-1, -\frac{1}{2}) \right|$$

(iii)
$$AC = \sqrt{(-5+3)^2 + (-2-4)^2}$$
$$= \sqrt{2^2 + 6^2}$$
$$= \sqrt{40}$$
$$= \sqrt{10}$$

M1 Uses
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{40}$$
$$= 2\sqrt{10}$$

(iv) Gradient of AC =
$$\frac{-2-4}{-5+3} = 3$$

Gradient of BC = $\frac{4-1}{-3-3} = -\frac{1}{2}$

B1
$$-\frac{1}{2}$$
 oe

12

3 oe

A1

B1

$$3 \times -\frac{1}{2} \neq -1$$
 so lines are not perpendicular

M1 Attempts to check
$$m_1 \times m_2$$

A1 4 Correct conclusion **www**

10(i)	$24x^2 - 3x^{-4}$	B1 B1	24x2 kx-4 -3x-4
	$48x + 12x^{-5}$	M1 A1 5	Attempt to differentiate their (i) Fully correct
(ii)	$8x^{3} + \frac{1}{x^{3}} = -9$ $8x^{6} + 1 = -9x^{3}$ $8x^{6} + 9x^{3} + 1 = 0$	*M1	Use a substitution to obtain a 3-term quadratic
	Let $y = x^3$ $8y^2 + 9y + 1 = 0$ (8y+1)(y+1) = 0	DM1 A1 M1	Correct method to solve quadratic $-\frac{1}{8}$, -1 Attempt to cube root at least one of their
	$y = -\frac{1}{8}, y = -1$ $x = -\frac{1}{2}, x = -1$	A1 5	y-values $-\frac{1}{2}, -1$
			SR one correct x value www B1 SR for trial and improvement: $x = -1$ B1
		10	$x = -\frac{1}{2}$ B2 Justification that there are no further solutions B2